1,氨基酸态氮 甲醛值法 用什么滴定氢氧化钠如何控制滴定正好是pH82

用瑞升万通的电位滴定仪,很容易实现,

氨基酸态氮 甲醛值法 用什么滴定氢氧化钠如何控制滴定正好是pH82

2,调味品中氨基酸态氮如何检验

凯氏固氮法就是把食品烧尽后进行检测。用盐酸滴定至灰色或蓝紫色为终点。具体可以参考GB/T5009.5-2003《食品中蛋白质的测定》
氨基酸态氮是在酱油酿造时粮食的化学变化产生的现在好多酱油稀释的太厉害,有一些甚至是色素\盐和水兑出来的所以得买品质好的酱油,实在不行你就得自己造酱油了,嘿嘿~~~

调味品中氨基酸态氮如何检验

3,食品中氨基酸的测定为什么使用电位滴定法

电位滴定法(potentiometric titration)是在滴定过程中通过测量电位变化以确定滴定终点的方法,和直接电位法相比,电位滴定法不需要准确的测量电极电位值,因此,温度、液体接界电位的影响并不重要,其准确度优于直接电位法,普通滴定法是依靠指示剂颜色变化来指示滴定终点,如果待测溶液有颜色或浑浊时,终点的指示就比较困难,或者根本找不到合适的指示剂。电位滴定法是靠电极电位的突跃来指示滴定终点。在滴定到达终点前后,滴液中的待测离子浓度往往连续变化n个数量级,引起电位的突跃,被测成分的含量仍然通过消耗滴定剂的量来计算。

食品中氨基酸的测定为什么使用电位滴定法

4,调味料中氨基酸态氮检测具体步骤急

电位甲醛滴定法【酱油卫生标准的分析方法Method for analysis of hygienic standard of soybean sauce】(第一法甲醛值法)(一)原理氨基酸有氨基及羧基两性基团,它们相互作用形成中性内盐,利用氨基酸的两性作用,加入甲醛以固定氨基的碱性,使羧基显示出来酸性,用氢氧化钠标准溶液滴定后定量,根据酸度计指示pH值,控制终点。R—CH—COOH——→R—C—C=O∣ ∣ ∣NH2 H3N—OR—CH—COOH+HCHO——→R—CH—COOH∣ ∣ NH2 NH—CH2OHR—CH—COOH +NaOH=R—CH—COONa∣ ∣NH—CH2OH NH—CH2OH(二)试剂1、甲醛(36%):应不含有聚合物。2、氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L] (三)仪器1、pHS—25型酸度计:包括标准缓冲溶液和KCL饱和溶液;2、20mL移液管;3、10mL微量滴定管;4、100mL容量瓶;5、250mL烧杯;(四)测定方法1、吸取5.0mL试样,置于100mL容量瓶中,加水至刻度,混匀,备用。2、吸取上述稀释液20.00mL置于200mL烧杯中,加水60mL水,插入电极,开动磁力搅拌器,用氢氧化钠标准滴定溶液[c(NaOH)=0.050mol/L]滴定至酸度计指示pH8.2,记录消耗氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L]的毫升数,(可计算总酸含量)。3、向上述溶液中准确加入10.0mL甲醛溶液,混匀。再用氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L]继续滴定至pH9.2,记录加入甲醛后滴定所消耗氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L]的毫升数。4、取80mL水,先用氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L]滴定至酸度计指示pH8.2,再加入10.0mL甲醛溶液,混匀,再用氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L]滴定至pH9.2,记录加入甲醛后滴定所消耗氢氧化钠标准滴定溶液[c(NaOH )=0.050mol/L]的毫升数。(五)结果计算试样中氨基酸态氮的含量为:式中:X—试样中氨基酸态氮的含量,g/100Ml;V1—测定用试样稀释液加入甲醛后消耗标准碱液的体积,mL;V2—测定空白试验加入甲醛后消耗标准碱液的体积,mL;C—氢氧化钠标准溶液的浓度,mol/L;0.014—与1.00 mL氢氧化钠标准滴定溶液[c(NaOH )=1.000mol/L]相当的氮的质量,g;(六)注意事项1、加入甲醛后放置时间不宜过长,应立即滴定,以免甲醛聚合,影响测定结果。2、由于铵离子能与甲醛作用,样品中若含有铵盐,将会使测定结果偏高。3、计算结果保留两位有效数字。精密度:在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的10%
凯氏固氮法就是把食品烧尽后进行检测。用盐酸滴定至灰色或蓝紫色为终点。具体可以参考gb/t5009.5-2003《食品中蛋白质的测定》

5,灰分测定的内容包括哪些为什么要测定样品中总灰分

我就是做检测的,经验如下: 食品灰分测定条件的选择说明及注意事项: 1、取样量 取样量应根据试样的种类和形状来决定。食品的灰分与其他成分相比含量较少,取样时应考虑称量误差,以灼烧后得到的灰分量为10~100毫克来决定取样量。 2、灰化容器 坩埚是测定灰分常用的灰化容器。其中最常用的是素烧瓷坩埚,它具有耐高温、耐酸、价格低廉等优点;但耐碱性差,灰化碱性食品时(如水果、蔬菜、豆类等)时,瓷坩埚内壁的釉层会被部分溶解,造成坩埚吸留现象,多次使用往往难以得到衡量,在这种情况下宜使用新的瓷坩埚或使用铂坩埚。铂坩埚具有耐高温、耐碱、导热性好、吸湿性小等优点,但价格是黄金的9倍,故使用时应特别注意其性能和使用规则,个别情况下可使用蒸发皿。 灰化容器的大小要根据试样的性状来选用,需要前处理的液体样品,加热易膨胀的样品,及灰分含量低、取样量较大的样品,须选用稍大些的坩埚,或选用蒸发皿;但灰化容器过大会是称量误差增大。 3、灰化温度 灰化温度的高低对灰分测定的结果影响很大,各种食品中无机成分的组成、性质及含量各不相同,灰化温度也应有所不同, 一般鱼类剂海产品、酒、谷类及其制品、乳制品(奶油除外)不大于550度;水果、蔬菜及其制品、糖及其制品、肉及肉制品不大于525度;奶油不大于500度;个别样品(如谷类饲料)可以达到600度。灰化温度过高将引起钠、钾、铝等元素的挥发损失,而且磷酸盐也会熔融,将炭粒饱藏起来,使碳粒无法氧化;灰化温度过低则灰化速度慢、时间长、不易灰化完全。因此必须根据食品的种类和形状兼顾各方面的因素,选择合适的灰化温度在保证灰化完全的前提下尽可能减少无机成分的挥发损失和缩短灰化时间。此外,加热的速度也不可太快,以防急剧干馏时灼热物局部产生大量气体而使微粒飞失——爆燃。 4、灰化时间 以样品灼烧至灰分呈白色或浅灰色,无碳粒存在并达到恒量为止。灰化达到恒量的时间因试样不同而异,一般需2~5h。对有些样品,即使灰化完全,残灰也不一定呈白色或浅灰色,如铁含量高的食品,残灰呈褐色;锰、铜量高的食品,残灰呈蓝绿色;有时即使灰的表面呈白色,内部仍残留碳块。所以应根据样品的组成、性状注意观察残灰的颜色,正确判断灰化程度。也有例外,如对谷物饲料和茎秆饲料则有灰化时间的规定,机在600度灰化2小时。 5、加速灰化的方法 对于含磷较多的谷物及其制品,磷酸过剩于阳离子,随着灰化的进行磷酸将以磷酸二氢钾、磷酸二氢钠等形式存在,在比较低的温度下会熔融而包住碳粒难以完全灰化,即使灰化相当长时间也达不到恒量。对于这类难灰化的样品可采用下列方法来加速灰化。 a、改变操作方法,样品经初步灼烧后,取出坩埚,冷却,沿坩埚边沿慢慢加入少量去离子水,使其中的水溶性盐类溶解,被包住的碳粒暴露出来,然后在水浴上蒸干,置于120~130烘箱中充分干燥,再灼烧至恒重。 b、样品经初步灼烧后,取出坩埚,冷却,沿坩埚边沿慢慢加入几滴硝酸或双氧水,蒸干后再灼烧至恒重。利用硝酸或双氧水的氧化作用来加速碳粒灰化。也可以加入10%碳酸氨等疏松剂,在灼烧时分解为气体逸出,使灰分呈松散状态,促进未灰化的碳粒灰化。这些物质经灼烧后完全分解,不增加残灰的质量。 c、加入乙酸镁、硝酸镁等灰化助剂,这类镁盐随灰化的进行而分解,与过剩的磷酸结合,残灰不会发生熔融而呈松散状态,避免碳粒被包裹,可大大缩短灰化时间。此法应做空白试验,以校正加入的镁盐灼烧后分解产生氧化镁的量。 6、样品经预处理后,在放入高温炉灼烧前要先进行炭化处理,样品炭化时要注意热源强度,防止在灼烧时因高温引起试样中的水分极剧蒸发,使试样飞溅;防止糖、蛋白质、淀粉等易发泡膨胀的物质在高温下发泡膨胀而逸出坩埚;不经炭化而直接灰化碳粒易被包裹,灰化不完全。 7、把坩埚放入马福炉或从炉中取出时,要放在炉口停留片刻,使坩埚预热或冷却,防止因温度剧变而使坩埚破裂。 8、灼烧后的坩埚应冷却到200度以下再移入干燥器中,否则因热的对流作用,易造成残灰飞散,且冷却速度慢,冷却后干燥期内形成较大真空,盖子不易打开。从干燥器内取出坩埚时,因内部成真空,开盖恢复常压时,应使空气缓慢流入以防残灰飞散。 9、如液体样品量过多,可分次在同一坩埚中蒸干,在测定蔬菜、水果这一类含水量高的样品时,应预先测定这些样品的水分,再将其干燥物继续加热灼烧,测定其灰分含量。 10、灰化后所的残渣可留作Ca、P、Fe等无机成分的分析。 11、用过的坩埚经初步洗刷后,可用粗盐算浸泡10~20分钟,再用水冲洗干净。 12、近年来灰化常采用红外灯。 13、加速灰化时,一定要沿坩埚壁加去离子水,不可直接将水洒在餐会上,以防残灰飞散造成损失和测定误差。

文章TAG:食品分析实验酱油中氨基酸态氮的测定  
下一篇