本文目录一览

1,频谱和频谱密度的区别

频谱,是光线的不同频率产生的不同光谱。光强则谱线密,光弱则谱线稀,稀密的程度叫频谱密度。

频谱和频谱密度的区别

2,多普勒是什么东西

00:00 / 00:4370% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

多普勒是什么东西

3,为什么引入频谱密度物理意义是什么

时域和频域是观察和研究振动或信号的两个不同的角度。 实际中绝大部分振动,表现在时间或空间距离上都是由很多不同频率和振幅的振动叠加的。 引入频谱密度,这样就可以从频域的角度将每个振动分离开,更好的研究其中的每一个振动。

为什么引入频谱密度物理意义是什么

4,多普勒效应是什么

00:00 / 00:5870% 快捷键说明 空格: 播放 / 暂停Esc: 退出全屏 ↑: 音量提高10% ↓: 音量降低10% →: 单次快进5秒 ←: 单次快退5秒按住此处可拖拽 不再出现 可在播放器设置中重新打开小窗播放快捷键说明

5,在功率信号 中频谱密度 与频谱什么区别谢谢

功率谱密度跟频谱的差别,功率谱密度纵轴是功率的分布,频谱纵轴是信号幅度分布,这数据单位上不一样,但结果一样。
功率谱:信号先自相关再作fft 频谱:信号直接作fft。 幅度谱的平方(二次量纲)又叫能量谱,它描述了信号能量的频域分布; 功率信号的功率谱描述了信号功率随频率的分布特点; 相频体现了图像的总体信息(低)和细节信息(高);

6,什么是多普勒多普勒效应它用在多方面吗声音光等

多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。但是由于缺少试验设备,多普勒但是没有用试验验证、几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,以验证该效应。 多普勒效应指出,波在波源移向观察者时频率变高,而在波源远离观察者时频率变低。当观察者移动时也能得到同样的结论。假设原有波源的波长为λ,波速为c,观察者移动速度为v: 当观察者走近波源时观察到的波源频率为(v+c)/λ,如果观察者远离波源,则观察到的波源频率为(v-c)/λ一个常被使用的例子是火车的汽笛声,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。同样的情况还有:警车的警报声和赛车的发动机声。 如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动是更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。 多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括光波、电磁波。科学家哈勃Edwin Hubble使用多普勒效应得出宇宙正在膨胀的结论。他发现远离银河系的天体发射的光线频率变低,即移向光谱的红端,称为红移,天体距离越远红移越大,这说明这些天体在远离银河系。反之,如果天体正移向银河系,则光线会发生蓝移。 在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低,所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。 在单色的情况下,我们的眼睛感知的颜色可以解释为光波振动的频率,或者解释为,在1秒钟内电磁场所交替为变化的次数。在可见区域,这种效率越低,就越趋向于红色,频率越高的,就趋向于蓝色——紫色。比如,由氦——氖激光所产生的鲜红色对应的频率为4.74×1014赫兹,而汞灯的紫色对应的频率则在7×1014赫兹以上。这个原则同样适用于声波:声音的高低的感觉对应于声音对耳朵的鼓膜施加压力的振动频率(高频声音尖厉,低频声音低沉)。 如果波源是固定不动的,不动的接收者所接收的波的振动与波源发射的波的节奏相同:发射频率等于接收频率。如果波源相对于接收者来说是移动的,比如相互远离,那么情况就不一样了。相对于接收者来说,波源产生的两个波峰之间的距离拉长了,因此两上波峰到达接收者所用的时间也变长了。那么到达接收者时频率降低,所感知的颜色向红色移动(如果波源向接收者靠近,情况则相反)。为了让读者对这个效应的影响大小有个概念,在图4中显示了多普勒频移,近似给出了一个正在远离的光源在相对速度变化时所接收到的频率。例如,在上面提到的氦——氖激光的红色谱线,当波源的速度相当于光速的一半时(参见图中所画的虚线),接收到的频率由4.74×1014赫兹下降到4.74×1014赫兹,这个数值大幅度地降移到红外线的频段。 一、声波的多普勒效应 在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高 变低. 为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来 就高;反之声调听起来就低.这种现象称为多普勒效应,它是用发现者克里斯蒂安·多普勒(Christian Doppler,1803-1853)的名字命名的,多普勒是奥地利物理学家和数学家.他于1842年首先发现了这种效应.为了理 解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好象 波被压缩了.因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反, 当火车驶向远方时,声波的波长变大,好象波被拉伸了. 因此,声音听起来就显得低沉.定量分析得到f1=(u+v0) /(u-vs)f ,其中vs为波源相对于介质的速度,v0为观察者相对于介质的速度,f表示波源的固有频率,u表示波 在静止介质中的传播速度. 当观察者朝波源运动时,v0取正号;当观察者背离波源(即顺着波源)运动时,v0取负 号. 当波源朝观察者运动时vs前面取负号;前波源背离观察者运动时vs取正号. 从上式易知,当观察者与声源相互 靠近时,f1>f ;当观察者与声源相互远离时。f1<f 二、光波的多普勒效应 具有波动性的光也会出现这种效应,它又被称为多普勒-斐索效应. 因为法国物理学家斐索(1819-1896)于 1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法.光波与声波的不同之 处在于,光波频率的变化使人感觉到是颜色的变化. 如果恒星远离我们而去,则光的谱线就向红光方向移动,称为 红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移. 三、光的多普勒效应的应用 20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了 旋涡星云正快速远离地球而去.1929年哈勃根据光普红移总结出著名的哈勃定律:星系的远离速度v与距地球的距离 r成正比,即v=Hr,H为哈勃常数.根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀, 物质密度一直在变小. 由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫( G. Gamow)和他的同事们提出大爆炸宇宙模型. 20世纪60年代以来,大爆炸宇宙模型逐渐被广泛接受,以致被天文 学家称为宇宙的"标准模型" . 多普勒-斐索效应使人们对距地球任意远的天体的运动的研究成为可能,这只要分析一下接收到的光的频谱就行 了. 1868年,英国天文学家W. 哈金斯用这种办法测量了天狼星的视向速度(即物体远离我们而去的速度),得出了 46 km/s的速度值

7,傅里叶变换中频谱密度的物理意义是什么

周期信号的傅里叶级数的意义是信号在每一个离散频率分量处的幅度; 非周期信号的傅里叶变换可以理解为周期无穷大的周期信号的傅里叶级数。这时,离散的频率逐渐变成了连续的频率,某一点频率处的频谱密度值是没有意义的,如同概率密度函数,你只有求那一点附近一小段频率内与频谱密度函数形成的面积值才有意义,才表示了信号在那一频率点的幅度。 具体参考《信号与系统》郑君里版 清华大学出版社 P91,P111

8,B超怀孕32周胎儿颈部见W形压迹多普勒示呈动静脉频谱是什么

W型压迹意思是说颈部被压出紧挨的两个凹陷(脐带绕颈2圈会压出2个凹陷);多普勒是彩超检查血流信号的。呈动静脉频谱意思是说颈部那个W型压迹有动脉和静脉的血流信号。脐带正是由脐动脉和脐静脉组成。 综上所述,B超描述的意思是说脐带在颈部缠绕了2圈。
胎心过快,因为脐带绕颈两周你不要做弯腰动作,会对孩子非常有危险,,勤查胎心吧
不知
可能是脐绕颈吧

9,信号与系统谁能帮我较为形象的解释一下什么是频谱密度 搜

单位频率上的频谱就是频谱密度。对非周期信号而言,所包含分量的频率是连续的,在每个频率点上的频谱幅度是一个无穷小量,此时用再幅度谱表示已没有意义,改用频谱密度。非周期信号的某频率处的频谱密度是一固定值。
频谱,其实就是频率的系列分布。就像菜谱,是一些列小菜一样。大多数情况下,频谱是指的电磁波频谱。比如,从频率低于2hz的次声波、2khz左右的声波、40khz左右的超声波、一直到电磁波、光波和射线。有了频谱,就可以针对性的研究很多问题,也利于对问题的分类。当然,获得频谱需要用到很多不同的仪器,归类到各种不同的学科领域。

10,什么是功率频谱密度

在物理学中,信号通常是波的形式,例如电磁波、随机振动或者声波。当波的频谱密度乘以一个适当的系数后将得到每单位频率波携带的功率,这被称为信号的功率谱密度(power spectral density, PSD)或者谱功率分布(spectral power distribution, SPD)。功率谱密度的单位通常用每赫兹的瓦特数(W/Hz)表示,或者使用波长而不是频率,即每纳米的瓦特数(W/nm)来表示。尽管并非一定要为信号或者它的变量赋予一定的物理量纲
能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱(密度),它描述了信号能量的频域分布;功率信号的功率谱(密度)描述了信号功率随频率的分布特点(密度:单位频率上的功率),业已证明,平稳信号功率谱密度恰好是其自相关函数的傅氏变换。对于非平稳信号,其自相关函数的时间平均(对时间积分,随时变性消失而再次退变成一维函数)与功率谱密度仍是傅氏变换对。在图形上不一样。

文章TAG:什么是多普勒频谱密度什么  多普勒  频谱  
下一篇