什么叫三线运维,四川师范大学成都学院哎 本科毕业五年做运维 在四川的一个三
来源:整理 编辑:汇众招标 2023-07-03 13:22:08
1,四川师范大学成都学院哎 本科毕业五年做运维 在四川的一个三
跟你差不多,毕业6年,到手10万左右,遇到瓶颈,尤其是发现身边更多人从事无形资产的行业待遇很好,心理更不愿意继续做电梯了
2,国家电网公司关于两级三线的官方说明是什么
这个主要用在信息运维方面,两级指的是国网和省网两级,三线指的是运维的一二三线
3,联通长途通讯传输局是做什么的
隶属于联通(原网通)集团公司省通信分公司,是专门维护长途通信光缆国家一二级干线的线路维护单位,还包括本地通信线路, 主要是铺设光缆光纤线路,抢修线路事故,线路改造。 维护模式 一、包线和集中维护: 1、干线光缆线路采取包线员包段维护。 2、本地网线路采取区域集中维护。 二、日常维护内容: 1、路面维护包括巡回、宣联、标识标志整治、外力监管、光缆位深探测、人(手) 孔检修、保持光缆设备完整良好,符合质量要求。 2、杆路维护包括整理、修补挂钩、检修吊线、清除架空线路上和吊线上杂物、杆路检修。 3、建立健全设备技术资料,原始记录。 三、技术性维护内容: 1、中继段光纤通道后向散射信号曲线检查(备用光纤)。 2、直埋接头盒监测电阻。 3、防护接地装置地线电阻。 4、故障预警及处置采取运维部与各传输分局联动。 四、宣传、执法: 紧紧依靠各级政府、军队、公安等相关部门成立了 “军警民联合护线组织"
4,求电脑高手解决这配置有需要改的么网游工作室带练用多谢
上fx8300!这才是多任务王道最好能有一块固态硬盘这样会带更多号而这块显卡无必要2G何况价格都赶上gtx750ti 2G的了多开号和显卡无关从成本上说,可以买三线品牌主板也可以用小板价格低,保修期过后也该换了:这配置没啥用。多开不是线程多就行CPU换:FX8300(散)
主板换:华擎 970 Extreme3 R2.0 内存加到:16G
显卡:根据你需要是窗口最小化脚本,还是需要窗口化实时来选择显卡,一般来说根据游戏本身的显卡需求强度,来选择显卡。。。实时挂机需要占用极高的显存,挂的号越多也就越吃,这点上和性能无关,只和显存大小有关。
首先CPU是物理4核的,但是有8线程。板子选技嘉的吧,没事还可以装苹果系统玩玩,现在是4年保修。显卡我比较信赖映众的,价格还实惠。最好再加一块固态硬盘,120G也就300多块钱。个人觉得技嘉的板子还是可以的,我电脑几乎是一个星期关一次,靠什么?
5,什么是三限五线制的供电方式
三限五线制的供电方式,就是三相四线的供电方式增加了一根保护地线,这根线是接铁壳设备外壳用的,防止铁壳设备漏电保护人身安全。三相五线制供电方式在三相四线制制供电系统中,把零干线的两个作用分开,即一根线做工作62616964757a686964616fe78988e69d8331333330333631零线(N),另外用一根线专做保护零线(PE),这样的供电结线方式称为三相五线制供电方式:三相指L1—(A)相、L2—(B)相、L3—(C)相三相,四线指通过正常工作电流的三根相线和一根N线(中性线),或称零线。不包括不通过正常工作电流的PE线(接地线)。由于在三相四线制中有中线,而中线的作用在于保证负载上的各相电压接近对称,在负载不平衡时不致发生电压升高或降低,若一相断线,其他两相的电压不变。所以在低压供电线路上采用三相四线制。L1—(A)相、L2—(B)相、L3—(C)相,各相线之间的电压称为线电压,线电压为380伏。L1—(A)相、L2—(B)相、L3—(C)相中的任一相与N线(中性线) 或称零线间的电压,称为相电压。相电压为220伏。三相五线制中五线指的是:三根相线加一根地线一根零线。三相五线制比三相四线制多一根地线,用于安全要求较高,设备要求统一接地的场所。三相五线制的学问就在于这两根”零线”上,在比较精密电子仪器的电网中使用时,如果零线和接地线共用一根线的话,对于电路中的工作零点会有影响的,虽然理论上它们都是零电位点,如果偶尔有一个电涌脉冲冲击到工作零线,而零线和地线却没有分开,比如这种脉冲却是因为相线漏电引起的,再如有些电子电路中如果零点飘移现象严重的话那么电器外壳就可能会带电,可能会损坏电气元件的,甚至损坏电器,造成人身安全的危险.零线和地线的根本差别在于一个构成工作回路,一个起保护作用叫做保护接地,一个回电网,一个回大地,在电子电路中这两个概念是要区别开来的.结构的区别:零线(N): 从变压器中性点接地后引出主干线。地线(PE):从变压器中性点接地后引出主干线,根据标准,每间隔20-30米重复接地。原理的区别:零线(N):主要应用于工作回路,零线所产生的电压等于线阻乘以工作回路的电流。由于长距离的传输,零线产生的电压就不可忽视,作为保护人身安全的措施就变得不可靠。地线(PE):不用于工作回路,只作为保护线。利用大地的绝对“0”电压,当设备外壳发生漏电,电流会迅速流入大地,即使发生PE线有开路的情况,也会从附近的接地体流入大地。居民用电(家庭用电)称为单相供电。即以上所说的(A、B、C相)线其中的任一相和N线(中性线) 或称零线的供电。电压为220伏。也就是单相两线的供电。三相四线制的漏电保护器严格地讲,在输入端必须是按照规定四根线都接入,而输出端可以是只接一相线一零线(单相)或两相(比如电焊机的380V两相)或三相(比如电动机)或三相四线都接(比如电机加照明)。如果零线不经漏电保护器而直接和用电设备连接,那从相线出来的电流(指单相)在“回路”到电源时就不经过漏电保护器了,此时漏电保护器就检测到这个电流(相当于漏电流),所以就引起漏电保护器跳闸。还有当三相电路中由于负载不平衡而引起中性点不是零电位,导致零线有电流,所以零线不经过保护器的话也会引起跳闸。但是不管接什么设备,输出端的零线都不得接地,否则将无法正常供电,如需对设备接保护接地线必须从设备外壳直接接线至大地。三相四线制用漏电保护器一定用四极的.如果用三极的,在三相负载不平衡时由于没有零线电流的返回,漏电保护器就判断线路是在漏电,所以一合闸就会跳闸.三相四线制系统中,让三相导线与零线一起穿过一个零序C.T,接地短路或人身触电时,利用KCL原理,iA+ iB+ iC+ iN= id≠0而构成剩余电流保护。三相式剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N线一起穿过一个零序C.T, IA+IB+IC+IN=Id正常时为零,单相接地或触电时不为零。不管是单相还是三相,电力线都是“进出线”同方向穿过漏电保护器中的零序电流互感器的,也就是说,现在普遍用的漏电保护器,都用一只零序电流互感器,只不过有的(比如工业用的)零序电流互感器是装在外面,而有的是“封装”在漏电保护器内部的。TN-C 方式供电系统用工作零线兼作接零保护线,可以称作保护中性线,可用 NPE 表示1 )由于三相负载不平衡,工作零线上有不平衡电流,在线路上产生一定的电位差,所以与保护线所联接的电气设备金属外壳对大地有一定的电压。 2 )如果工作零线断线,则保护接零的漏电设备外壳带电(对地220V!)。 3 )如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危险电位蔓延。 4 ) TN-C 系统干线上使用漏电保护器时,漏电保护器后面的所有重复接地必须拆除,否则漏电开关合不上;而且,工作零线在任何情况下都不得断开。所以,实用中工作零线只能让漏电保护器的上侧有重复接地。 5 ) TN-C 方式供电系统只适用于三相负载基本平衡(无220V负载)情况。TN-S 方式供电系统工作零线 N 和专用保护线 PE 严格分开的供电系统1 )系统正常运行时,专用保护线上没有电流,只是工作零线上有不平衡电流。 PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线 PE 上,安全可靠。 2 )工作零线只用作单相照明负载回路。 3 )专用保护线 PE 不许断线,也不许进入漏电开关作工作零线。 4 )干线上使用漏电保护器,漏电保护器下不得有重复接地,而 PE 线有重复接地,但是不经过漏电保护器,所以 TN-S 系统供电干线上也可以安装漏电保护器。 5 ) TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在工程施工前的“三通一平”(电通、水通、路通和地平——必须采用 TN-S 方式供电系统。TN-C-S 方式供电系统在施工临时用电中,如果前部分是(没有220V负载的) TN-C 方式供电,而施工规范规定施工现场必须采用 TN-S 方式供电系统,则可以在系统后部分现场总配电箱分出 PE 线1 )工作零线 N 与专用保护线 PE 相联通,总开关箱后线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。总开关箱后面 PE 线上没有电流,即该段导线上没有电压降,因此, TN-C-S 系统可以降低电气设备外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于 N 线的负载不平衡电流的大小及 N线在总开关箱前线路的长度。负载不平衡电流越大, N线又很长时,设备外壳对地电压偏移就越大。所以要求负载不平衡电流不能太大,而且在 PE 线上应作重复接地。 2 ) PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏电保护器跳闸造成大范围停电,规范规定:有接零保护的零线不得串接任何开关和熔断器。 3 )对 PE 线除了在总箱处必须和 N 线相接以外,其他各分箱处均不得把 N 线和 PE 线相联, PE 线上不许安装开关和熔断器,且联接必须牢靠。 通过上述分析, TN-C-S 供电系统是在 TN-C 系统上临时变通的作法。当三相电力变压器工作接地情况良好、三相负载比较平衡时, TN-C-S 系统在施工用电实践中效果还是可行的。但是,在三相负载不平衡、施工工地有专用的电力变压器时,必须采用 TN-S 方式供电系统.使电工设备的金属外壳接地的措施。可防止在绝缘损坏或意外情况下金属外壳带电时强电流通过人体,以保证人身安全。 所谓保护接地就是将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分(即与带电部分相绝缘的金属结构部分)用导线与接地体可靠连接起来的一种保护接线方式。接地保护一般用于配电变压器中性点不直接接地(三相三线制)的供电系统中,用以保证当电气设备因绝缘损坏而漏电时产生的对地电压不超过安全范围。如果家用电器未采用接地保护,当某一部分的绝缘损坏或某一相线碰及外壳时,家用电器的外壳将带电,人体万一触及到该绝缘损坏的电器设备外壳(构架)时,就会有触电的危险。相反,若将电器设备做了接地保护,单相接地短路电流就会沿接地装置和人体这两条并联支路分别流过。一般地说,人体的电阻大于1000欧,接地体的电阻按规定不能大于4欧,所以流经人体的电流就很小,而流经接地装置的电流很大。这样就减小了电器设备漏电后人体触电的危险。 保护接地 实践证明,采用保护接地是当前我国低压电力网中的一种行之有效的安全保护措施。由于保护接地又分为接地保护和接零保护,两种不同的保护方式使用的客观环境又不同,因此如果选择使用不当,不仅会影响客户使用的保护性能,还会影响电网的供电可*性。那么作为公用配电网络中的电力客户,如何才能正确合理地选择和使用保护接地呢? 一是要认识和了解接地保护与接零保护,掌握这两种保护方式的不同点和使用范围 接地保护与接零保护统称保护接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等相关因素,《农村低压电力技术规程》将上述两种电力网的运行系统的使用范围进行了划分。tt系统通常适用于农村公用低压电力网,该系统属于保护接地中的接地保护方式;tn系统(tn系统又可分为tn-c、tn-c-s、tn-s三种)主要适用于城镇公用低压电力网和厂矿企业等电力客户的专用低压电力网,该系统属于保护接地中的接零保护方式。当前我国现行的低压公用配电网络,通常采用的是tt或tn-c系统,实行单相、三相混合供电方式。即三相四线制380/220v配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 二是要根据客户所在的供电系统,正确选择接地保护和接零保护方式 电力客户究竟应该采取何种保护方式,首先必须取决于其所在的供电系统采取的是是何种配电系统。如果客户所在的公用配电网络是tt系统,客户应该统一采取接地保护;如果客户所在的公用配电网络是tn-c系统,则应统一采取接零保护。 tt系统和tn-c系统是两个具有各自独立特性的系统,虽然两个系统都可以为客户提供220/380v的单、三相混合电源,但它们之间不仅不能相互替代,同时在保护措施上的要求又是截然的不同。这是因为,同一配电系统里,如果两种保护方式同时存在的话,采取接地保护的设备一旦发生相线碰壳故障,零线的对地电压将会升高到相电压的一半或更高,这时接零保护(因设备的金属外壳与零线直接连接)的所有设备上便会带上同样高的电位,使的设备外壳等金属部分呈现较高的对地电压,从而危及使用人员的安全。因此,同一配电系统只能采用同一种保护方式,两种保护方式不得混用。其次是客户必须懂得什么叫保护接地,正确区分接地与接零保护的不同点。保护接地是指家用电器、电力设备等由于绝缘的损坏可能使得其金属外壳带电,为了防止这种电压危及人身安全而设置的接地称为保护接地。将金属外壳用保护接地线(pee)与接地极直接连接的叫接地保护;当将金属外壳用保护线(pe)与保护中性线(pen)相连接的则称之为接零保护。 三是要依据两种保护方式的不同设置要求,规范设计、施工工艺标准 规范客户受电端建筑物内的配电线路设计、施工工艺标准和要求,通过对新建或改造的客户建筑物的室内配电部分,实施以局部三相五线制或单相三线制,取代tt或tn-c系统中的三相四线制或单相二线制配电模式,可以有效实现客户端的保护接地。所谓“局部三相五线制或单相三线制”就是在低压线路接入客户后,客户要改变原来的传统配线模式,在原来的三相四线制和单相二线制配线的基础上,分别各增加一条保护线接入到客户每一个需要实施接地保护电器插座的接地线端子上。为了便于维护和管理,这条保护线的室内引出和室外引入端的交汇处应装设在电源引入的配电盘上,然后再根据客户所在的配电系统,分别设置保护线的接入方法。 1、tt系统接地保护线(pee)的设置要求 当客户所在的配电系统是tt系统时,由于该系统要求客户必须采取接地保护方式。因此,为了达到接地保护的接地电阻值的要求,客户要按照《农村低压电力技术规程》的要求,在室外埋设人工接地装置,其接地电阻应满足下式要求: re≤ulom/iop 式中:re 接地电阻(ω) ulom 通称电压极限(v),正常情况下可按交流有效值50v考虑 iop 相邻上一级剩余电流(漏电)保护器的动作电流(a) 对于一般客户来讲,只要采用40×40×4×2500毫米的角钢,用机械打入的方式垂直打入地下0.6米,就能满足接地电阻的阻值要求。然后用直径≥φ8的圆钢焊接后引出地面0.6米,再用同引入的电源相线同等材质和型号的导线连接到配电盘的保护线(pee)上。 2、 tn-c系统接零保护线(pe)的设置要求 由于该系统要求客户必须采取接零保护方式,因此需要在原三相四线制或单相两线制的基础上,另增加一条专用保护线(pe),该条保护线是由客户受电端配电盘的保护中性线(pen)上引出,与原来的三相四线制或单相二线制一同进行配线连接。为了保证整个系统工作的安全可*,在使用中应特别注意,保护线(pe)自从保护中性线(pen)上引出后,在客户端就形成了中性线n和保护线(pe),使用中不能将两线再进行合并为(pen)线。为了确保保护中性线(pen)的重复接地的可*性,tn-c系统主干线的首、末端,所有分支t接线杆、分支末端杆,等处均应装设重复接地线,同时三相四线制用户也应在接户线的入户支架处,(pen)线在分为中性线(n)和保护线(pe)之前,进行重复接地。无论是保护中性线(pen)、中性线(n)还是保护线(pe)的导线截面一律按照相线的导线型号和截面标准来选择。
6,保护接零和保护接地有什么区别主要优点和缺点是什么它们主要用
1、原理不同。若将电器设备做了接地保护,则出现单相接地短路或漏电故障时会在线路中产生较大的短路电流或漏电电流,从而使上级保护器件(断路器或漏电断路器)动作脱扣,自动切断故障线路电源。保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。2、适用范围不同。保护接地适用于一般的低压不接地电网及采取其它安全措施的低压接地电网;保护接地也能用于高压不接地电网。保护接零只适用于中性点直接接地的低压电网。3、线路结构不同。保护接地系统除相线外,只有保护地线。保护接零系统除相线外,必须有零线;必要时,保护零线要与工作零线分开;其重要的装置也应有地线。保护接零的优点:在接地电网中,为防止用电设备外壳带电伤人,采用保护接零比采用保护接地效果好的多。保护接零的缺点:只能消除电器的外壳与电源的火线连接的严重故障,不能排除电器外壳的漏电故障保护接地的优点:一是降低漏电设备的对地电压;二是减轻了零干线断线的危险;三是当线路、设备发生对地短路时,降低了接地电阻,增加短路电流,加速保护装置动作速度;四是改善架空线路的防雷性能,有利于限制雷电过电压。保护接地的缺点:线很难达要求的技术标准,存在不安全因素,反而埋下事故隐患。使用情况划分如下:当电力系统有一点直接接地,受电设备的外露可导电部分通过保护线(PE线)与接地点连接;当保施工现场用电与外部共用一低压电网,即电力系统接地极不在施工现场时,就很难采用保护接零系统,只有采用保护接地系统了。当施工现场采用电业部门低压侧供电,与外电线路员一电网时,应按当地供电部门的规定采用保护接地系统。扩展资料:在日常生活中,为了防止电器外壳带电,采用接地措施进行保护,当接地电阻低于 4 欧时,此时如果电器的外壳带有 220V的电压,则对接地回路进行保护,按照公式 I=U/(RO+RG),那么短路电流为 27.5A。其中,Ro 代表变压器中性点的接地电阻,一般将 Ro 称为工作接地电阻。为了确保保护设备及时有效的保护动作,通常情况下,需要调整接地短路电流,一般按照自动开关整定电流的 1.25 倍进行处理,或者按照 3 倍的溶丝熔断电流进行处理。通过计算,当整定电流小于 27.5/1.25 时,这时短路电流能够断开。 对于保护设备来说,如果额定电流值大于上述值,那么保护设备就不能及时有效地进行保护动作。此时,电器设备外壳上将会存在对地电压,并且电压存续时间比较长,同时电器操作人员将会受到这种电压的威胁。参考资料:搜狗百科-保护接零搜狗百科-保护接地一、保护接零与保护接地的区别1、保护原理不同。保护接地是限制设备漏电后的对地电压,控制其处于一个安全的范围内,避免保护使用者不受伤害。在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,以此来保护线路上的用电器。此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。2、适用范围不同。保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。3、线路结构不同。如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。二、保护接零与保护接地的优缺点与划分依据在中性点对地绝缘的电网中带电部分意外碰壳时,接地电流将通过接触碰壳设备的人体和电网与大地之间的电容构成回路,流过故障点的接地电流主要是电容电流。在一般情况下,此电流是不大的。但是,如果电网分布很广,或者电网的绝缘强度显著下降,这个电流可能达到危险程度,这就有必要采取安全措施。如果将设备的外壳通过保护接地电阻与大地连接起来,这时通过人体的电流仅是全部接地电流的一部分。显然,保护接地电阻与人体的电阻是并联的,保护接地电阻越小,流经人体的也越小。如果限制保护接地电阻在适当的范围内,就能保障人身的安全。所以,在这种中性点不接地(绝缘)的系统中,凡因绝缘损坏而可能呈现对地电压的金属部分(正常时是不带电的)均应接地,这就是保护接地.所谓保护接零,就是把电气设备在正常情况下不带电的金属部分与电网的零线紧密连接,有效地起到保护人身和设备的安全。在变压器中性点直接接地的三相四线制系统中,通常采用保护接零作为安全措施。在这种情况下,如果一相带电部分碰连设备外壳,则通过设备外壳形成相线对零线的单相短路,短路电流总是超出正常工作电流许多倍,能使线路上的保护装置迅速动作,从而使故障部分脱离电源,保障安全。在380/220V三相四线制中性点直接接地的电网中,不论环境如何,凡因绝缘损坏而可能呈现对地电压的金属部分,均应接零.保护接地与保护接零的共同之处就是都能减轻人体触电危险,保护人身安全和设备安全.不同之处在于,保护接地用在中性点对地绝缘的系统中,而保护接零只能用在中性点直接接地的系统中,同时,要能保障零线不能断开,否则就会有危险,就必须重复接地.【扩展内容】1、保护接零不太可靠,比如,零线断了,可能无法得到相应保护汀2、中性点不接地的三相四线制配电系统,不允许用保护接零,原因同第1条;3、保护接地与保护接零不允许存在混用的情况,4、采用保护接零的系统,最好与保护接地同时使用,并且保护零线要做好重复分段接地;5、保护接零系统的保护装置必须安全可靠,灵敏性一 定要满足要求,同时最好配合其他的保护措施;6、保护接零系统的保护零线不允许被切断,漏电保护器回路的漏电保护器要选择1P+N的。接地线-百度百科保护接零保护接地与保护接零的主要区别:1.保护原理不同。保护接地是限制设备漏电后的对地电压,使之不超过安全范围。在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。2.适用范围不同。保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。3.线路结构不同。如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。保护接零的优点防电器外壳带电,若采用保护接地,在接地电阻RG符合要求不大于4欧姆的条件下,如果电器外壳带上220V的电压,则保护接地回路,短路电流I=U/(R0+RG)=220/(4+4)=27.5(A),其中R0是变压器中性点的接地电阻叫工作接地电阻。为了保证保护设备可靠的动作,接地短路电流不小于自动开关整定电流的1.25倍或为容丝熔断电流的3倍,因此,上式中的短路电流仅能保证断开整定电流不超过27.5/1.25、即22A的自动开关,或27.5/3、即9.2A的熔断器,如果保护设备的额定电流值大于上述值,保护设备就不能迅速、可靠的动作。此时,电器设备外壳上将长期存在对地电压,对操作电器的人员是非常危险的。而采用保护接零,电器外壳绝缘击穿时的短路电流远大于27.5(A),只要合理选择保护装置的动作电流,当绝缘击穿造成单相短路,短路电流通常很大,足以使保护装置迅速切断电源,消除触电的危险。可见在接地电网中,为防止用电设备外壳带电伤人,采用保护接零比采用保护接地效果好的多。保护接零的缺点由低压公用电网或农村集体电网供电的电气设备应采用保护接地,不得采用保护接零。这是因为公用电网和农村集体电网,低压线路的维护水平较低,供电线路长,零线断线的可能性存在,若采用保护接零,万一零线断线,一台用电设备外壳带电,此低压系统的所有用电设备都带电非常危险。单相负荷线路保护零线不得借用工作零线否则,如果接零线路松落或折段,将会使设备金属外壳带电或当零线与火线接反时使外壳带电。采用保护接零,只能消除电器的外壳与电源的火线连接的严重故障,不能排除电器外壳的漏电故障,所以电器外壳在采用保护接零的同时,还应采取其他保护措施消除电器外壳的漏电故障,目前常用的方法是安装电流型漏电保护器。必须有可靠的短路保护或过电流保护装置相配合,各种保护装置必须按照安全要求选择和整定。保护接地的优点一是降低漏电设备的对地电压;二是减轻了零干线断线的危险;三是当线路、设备发生对地短路时,由于重复接地与工作接地并联,降低了接地电阻,增加短路电流,加速保护装置动作速度,缩短事故持续时间;四是因重复接地对雷电流的分流作用,改善了架空线路的防雷性能,有利于限制雷电过电压。保护接地的缺点现行的公用配电网络中,并没有采用统一专用的接地(或接零)线,用户不是都具备这方面的专业技术知识,再加上城镇居住条件的客观环境、房屋配电系统设计施工不规范、供电部门安全宣传管理不到位等因素的限制或影响,正确有效地实施保护接地不是件容易的事。因此很多用户使用保护接地线也很难达要求的技术标准,存在不安全因素,反而埋下事故隐患。保护接零(protective connect to neutral):把电工设备的金属外壳和电网的零线可靠连接,以保护人身安全的一种用电安全措施。保护接地,是为防止电气装置的金属外壳、配电装置的构架和线路杆塔等带电危及人身和设备安全而进行的接地。所谓保护接地就是将正常情况下不带电,而在绝缘材料损坏后或其他情况下可能带电的电器金属部分(即与带电部分相绝缘的金属结构部分)用导线与接地体可靠连接起来的一种保护接线方式。接地保护一般用于配电变压器中性点不直接接地(三相三线制)的供电系统中,用以保证当电气设备因绝缘损坏而漏电时产生的对地电压不超过安全范围。保护接地与保护接零的主要区别:(1)保护原理不同 保护接地是限制设备漏电后的对地电压,使之不超过安全范围。在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。(2)适用范围不同 保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。(3)线路结构不同 如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。 保护接零的优点 防电器外壳带电,若采用保护接地,在接地电阻RG符合要求不大于4欧姆的条件下,如果电器外壳带上220V的电压,则保护接地回路,短路电流I=U/(R0+RG)=220/(4+4)=27.5(A),其中R0是变压器中性点的接地电阻叫工作接地电阻。为了保证保护设备可靠的动作,接地短路电流不小于自动开关整定电流的1.25倍或为容丝熔断电流的3倍,因此,上式中的短路电流仅能保证断开整定电流不超过27.5/1.25、即22A的自动开关,或27.5/3、即9.2A的熔断器,如果保护设备的额定电流值大于上述值,保护设备就不能迅速、可靠的动作。此时,电器设备外壳上将长期存在对地电压,对操作电器的人员是非常危险的。而采用保护接零,电器外壳绝缘击穿时的短路电流远大于27.5(A),只要合理选择保护装置的动作电流,当绝缘击穿造成单相短路,短路电流通常很大,足以使保护装置迅速切断电源,消除触电的危险。可见在接地电网中,为防止用电设备外壳带电伤人,采用保护接零比采用保护接地效果好的多。 保护接零的缺点由低压公用电网或农村集体电网供电的电气设备应采用保护接地,不得采用保护接零。这是因为公用电网和农村集体电网,低压线路的维护水平较低,供电线路长,零线断线的可能性存在,若采用保护接零,万一零线断线,一台用电设备外壳带电,此低压系统的所有用电设备都带电非常危险。单相负荷线路保护零线不得借用工作零线否则,如果接零线路松落或折段,将会使设备金属外壳带电或当零线与火线接反时使外壳带电。采用保护接零,只能消除电器的外壳与电源的火线连接的严重故障,不能排除电器外壳的漏电故障,所以电器外壳在采用保护接零的同时,还应采取其他保护措施消除电器外壳的漏电故障,目前常用的方法是安装电流型漏电保护器。 必须有可靠的短路保护或过电流保护装置相配合,各种保护装置必须按照安全要求选择和整定。保护接地的优点一是降低漏电设备的对地电压;二是减轻了零干线断线的危险;三是当线路、设备发生对地短路时,由于重复接地与工作接地并联,降低了接地电阻,增加短路电流,加速保护装置动作速度,缩短事故持续时间;四是因重复接地对雷电流的分流作用,改善了架空线路的防雷性能,有利于限制雷电过电压。 保护接地的缺点现行的公用配电网络中,并没有采用统一专用的接地(或接零)线,用户不是都具备这方面的专业技术知识,再加上城镇居住条件的客观环境、房屋配电系统设计施工不规范、供电部门安全宣传管理不到位等因素的限制或影响,正确有效地实施保护接地不是件容易的事。因此很多用户使用保护接地线也很难达要求的技术标准,存在不安全因素,反而埋下事故隐患。希望能对你有帮助保护接零:1、概念区分:在低压配电系统中,变压器的中性点直接接地,正常情况下电气设备的金属外壳以及与其相连的可导电部分均与线路的零线做可靠的电气连接。2、优势:在接地电网中,与保护接地方式相比,保护接零方式在规避用电设备外壳带电伤人风险方面优越性更加突出。保护接地:1、概念区分:指的是将一切电气设备的金属外壳或平时不带电但可以导电的设备,用导体与接地体(这里可以是PE线,也可以是接地网引出线)可靠连接起来的一种保护接线方式。2、优势:当用电设备发生漏电或相线接触设备外壳时,造成设备外壳带电,而保护接地就是限制设备漏电后的对地电压,使之不超过安全范围。区别:1、原理不同;保护接地是限制设备漏电后的对地电压,使之不超过安全范围。在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。2、适用范围;保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。3、线路结构;如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。示意图如下:扩展资料:工作接地-是电在工作中产生的余电,为了不让余电击伤人,让它能够让余电排入到大地体中,所称工作接地;凡是因设备运行需要而进行的接地,叫做工作接地。如果不接,设备就不能运行。例如:变压器的中性点接地保护零线-其实也就是地线,就是其中某根电线接触物体时,让漏保开关能及时跳闸,不击伤人,所称保护零线。两种接线方式都为保护人身安全起着重要作用。参考资料来源一:搜狗百科--保护接地参考资料来源二:搜狗百科--保护接零保护接地与保护接零的主要区别:(1)保护原理不同 保护接地是限制设备漏电后的对地电压,使之不超过安全范围。在高压系统中,保护接地除限制对地电压外,在某些情况下,还有促使电网保护装置动作的作用;保护接零是借助接零线路使设备漏电形成单相短路,促使线路上的保护装置动作,以及切断故障设备的电源。此外,在保护接零电网中,保护零线和重复接地还可限制设备漏电时的对地电压。(2)适用范围不同 保护接地即适用于一般不接地的高低压电网,也适用于采取了其他安全措施(如装设漏电保护器)的低压电网;保护接零只适用于中性点直接接地的低压电网。(3)线路结构不同 如果采取保护接地措施,电网中可以无工作零线,只设保护接地线;如果采取了保护接零措施,则必须设工作零线,利用工作零线作接零保护。保护接零线不应接开关、熔断器,当在工作零线上装设熔断器等开断电器时,还必须另装保护接地线或接零线。 保护接零的优点 防电器外壳带电,若采用保护接地,在接地电阻RG符合要求不大于4欧姆的条件下,如果电器外壳带上220V的电压,则保护接地回路,短路电流I=U/(R0+RG)=220/(4+4)=27.5(A),其中R0是变压器中性点的接地电阻叫工作接地电阻。为了保证保护设备可靠的动作,接地短路电流不小于自动开关整定电流的1.25倍或为容丝熔断电流的3倍,因此,上式中的短路电流仅能保证断开整定电流不超过27.5/1.25、即22A的自动开关,或27.5/3、即9.2A的熔断器,如果保护设备的额定电流值大于上述值,保护设备就不能迅速、可靠的动作。此时,电器设备外壳上将长期存在对地电压,对操作电器的人员是非常危险的。而采用保护接零,电器外壳绝缘击穿时的短路电流远大于27.5(A),只要合理选择保护装置的动作电流,当绝缘击穿造成单相短路,短路电流通常很大,足以使保护装置迅速切断电源,消除触电的危险
7,保护接地的问题
保护接地——变压器中性点(或一相)不直接接地的电网内,一切电气设备正常情况下不带电的金属外壳以及和它连接的金属部分与大地作可靠地电气联接。而保护接零就是在1KV以下变压器中性点直接接地的系统中,一切电气设备正常情况下不带电的金属部分与电网零干线可靠连接。接地,是为了防止人身触电事故、保证电气设备正常运行所采取的一项重要技术措施。这两种保护的不同点主要表现在三个方面:一是保护原理不同。接地保护的基本原理是限制漏电设备对地的泄露电流,使其不超过某一安全范围,一旦超过某一整定值保护器就能自动切断电源;接零保护的原理是借助接零线路,使设备在绝缘损坏后碰壳形成单相金属性短路时,利用短路电流促使线路上的保护装置迅速动作。二是适用范围不同。根据负荷分布、负荷密度和负荷性质等。当前我国现行的低压公用配电网络,通常采用的是TT或TN-C系统,实行单相、三相混合供电方式。即三相四线制380/220V配电,同时向照明负载和动力负载供电。三是线路结构不同。接地保护系统只有相线和中性线,三相动力负荷可以不需要中性线,只要确保设备良好接地就行了,系统中的中性线除电源中性点接地外,不得再有接地连接;接零保护系统要求无论什么情况,都必须确保保护中性线的存在,必要时还可以将保护中性线与接零保护线分开架设,同时系统中的保护中性线必须具有多处重复接地。 检修接地——临时挂地线 临时接地 事故接地——带电体与地意外接地 接地 工作接地——三相四线制中性点接地 保护接地 固定接地 安全接地 防雷接地 防静电接地 屏蔽接地2、正确认识和掌握保护接地的两种保护方式的不同点和使用范围 实践证明,采用保护接地是当前我国低压电力网中的一种行之有效的安全保护措施。由于保护接地又分为接地保护和接零保护,两种不同的保护方式使用的客观环境又不同,因此如果选择使用不当,不仅会影响客户使用的保护性能,还会影响电网的供电可靠性。那么作为公用配电网络中的电力客户,如何才能正确合理地选择和使用保护接地呢? 电力客户究竟应该采取何种保护方式,首先必须取决于其所在的供电系统采取的是是何种配电系统。如果客户所在的公用配电网络是TT系统,客户应该统一采取接地保护;如果客户所在的公用配电网络是TN-C系统,则应统一采取接零保护。 TT系统和TN-C系统是两个具有各自独立特性的系统,虽然两个系统都可以为客户提供220/380V的单、三相混合电源,但它们之间不仅不能相互替代,同时在保护措施上的要求又是截然的不同。这是因为,同一配电系统里,如果两种保护方式同时存在的话,采取接地保护的设备一旦发生相线碰壳故障,零线的对地电压将会升高到相电压的一半或更高,这时接零保护(因设备的金属外壳与零线直接连接)的所有设备上便会带上同样高的电位,使的设备外壳等金属部分呈现较高的对地电压,从而危及使用人员的安全。因此,同一配电系统只能采用同一种保护方式,两种保护方式不得混用。其次是客户必须懂得什么叫保护接地,正确区分接地与接零保护的不同点。保护接地是指电器、电力设备等由于绝缘的损坏可能使得其金属外壳带电,为了防止这种电压危及人身安全而设置的接地称为保护接地。将金属外壳用保护接地线(PE)与接地极直接连接的叫接地保护,如图1所示;当将金属外壳用保护线(PE)与保护中性线(PEN)相连接的则称之为接零保护,如图2所示。 4、如何正确选择和使用接地保护与接零保护 规范受电端建筑物内的配电线路设计、施工工艺标准和要求,通过对新建或改造的客户建筑物的室内配电部分,实施以局部三相五线制或单相三线制,取代TT或TN-C系统中的三相四线制或单相二线制配电模式,可以有效实现客户端的保护接地。所谓“局部三相五线制或单相三线制”就是在低压线路接入客户后,客户要改变原来的传统配线模式,在原来的三相四线制和单相二线制配线的基础上,分别各增加一条保护线接入到客户每一个需要实施接地保护电器插座的接地线端子上。为了便于维护和管理,这条保护线的室内引出和室外引入端的交汇处应装设在电源引入的配电盘上,然后再根据客户所在的配电系统,分别设置保护线的接入方法。 4.1 TT系统接地保护线(PE)的设置要求 当用户所在的配电系统是TT系统时,由于该系统要求客户必须采取接地保护方式。因此,为了达到接地保护的接地电阻值的要求,客户要按照《农村低压电力技术规程》的要求,在室外埋设人工接地装置,其接地电阻应满足下式要求: Re≤Ulom/Iop式中:Re 接地电阻(Ω)Ulom 通称电压极限(V),正常情况下可按交流有效值50V考虑Iop 相邻上一级剩余电流(漏电)保护器的动作电流(A) 对于一般用户来讲,只要采用40×40×4×2500毫米的角钢,用机械打入的方式垂直打入地下0.6米,就能满足接地电阻的阻值要求。然后用直径≥φ8的圆钢焊接后引出地面0.6米,再用同引入的电源相线同等材质和型号的导线连接到配电盘的保护线(PEE)上。4.2 TN-C系统接零保护线(PE)的设置要求 由于该系统要求用户必须采取接零保护方式,因此需要在原三相四线制或单相两线制的基础上,另增加一条专用保护线(PE),该条保护线是由用户受电端配电盘的保护中性线(PEN)上引出,与原来的三相四线制或单相二线制一同进行配线连接。为了保证整个系统工作的安全可靠,在使用中应特别注意,保护线(PE)自从保护中性线(PEN)上引出后,在用户端就形成了中性线N和保护线(PE),使用中不能将两线再进行合并为(PEN)线。为了确保保护中性线(PEN)的重复接地的可靠性,TN-C系统主干线的首、末端,所有分支T接线杆、分支末端杆,等处均应装设重复接地线,同时三相四线制用户也应在接户线的入户支架处,(PEN)线在分为中性线(N)和保护线(PE)之前,进行重复接地。无论是保护中性线(PEN)、中性线(N)还是保护线(PE)的导线截面一律按照相线的导线型号和截面标准来选择。5、使用保护接地时应注意的几个问题 用户可根据自己所在的配电系统,正确选择好采取的保护方式以后,还要特别注意以下几个方面的问题: 5.1 TT系统中用户使用的电器外露可导电部分要全部作接地保护 在TT系统中,受电设备外露可导电部分如果不作接地保护,一旦绝缘破损,外壳即呈现有危险电压,人触及后通过人体的电流值,可达数百毫安足以致人于死地。当对外露可导电部分作接地保护时,因装有RCD,可导致电源断开,使人身安全得到保护。 5.2 TN-C系统中用户所有使用的电器外露可导电部分要用保护线连接到保护中性线上,严禁保护线(PE)断线 在TN-C系统中,接保护中性线是为了防止受电设备因绝缘破坏,外壳带电伤人,而将受电设备的外露可导电部分用保护线与保护中性线相连接。之所以起保护作用,主要是利用相线碰壳时,产生的短路电流,短路电流经相线—中性线回路,而不经过电源中性点接地装置,使过流保护装置动作而中断电源,起到保护作用。其保护效能要好于接地保护的保护效能。但在具体实施过程中,如果稍有疏忽大意,不能严格按照规程要求实施保护要求,接零保护系统导致的触电危险性仍然是很高的。如果连接客户电器设备的保护线(PE)发生断线或电器设备未连接保护线(PE),一旦发生设备绝缘损坏碰壳故障,不仅不能形成单相金属性短路,反而使得电器设备的外壳带电危及人身和设备安全。 5.3合理设置熔断器的位置 在TT系统不宜在N线上装设电器将N线断开,当需要断开N线时,应装设相线和N线一起断开的保护电器。在TN-C系统,严禁断开PEN线,不得装设断开PEN线的任何电器。当需要在PEN线上装设电器时,只能相应断开相线回路。 5.4 正确安装使用末级剩余电流保护器 安装剩余电流保护器是防止低压电网剩余电流造成故障危害的有效技术措施。在低压配电网络中,作为客户端的末级保护,通常采用RCD(剩余电流保护装置,也称漏电开关)作为附加保护。客户在选择安装RCD时,不仅要充分考虑供电线路、供电方式、供电电压及系统的接地型式;还要严格区分中性线和保护线,三极四线式或四极式RCD的中性线应接入RCD。要特别注意的是:无论客户使用什么样的配电系统,中性线一旦经过RCD就不得再作为保护线使用,也不得重复接地或接设备外露可导电部分,保护线也不得接入RCD。RCD安装后,负荷侧的中性线,不得与其他回路共用,被保护的电气设备、线路的正常运行时的绝缘电阻不应小于0.5MΩ。 对于TT系统,低压剩余电流保护一般采用漏电总保护(中级保护)和末级保护的多级保护方式。其中的末级保护属于客户端的自我保护装置,对于居民照明客户来讲,由于配电保护装置安装的一般比较简单,因此无论其使用的是何种系统,都应优先选用具有漏电保护、短路保护或过负荷保护、过压保护的多功能的RCD。在同一线路上装设RCD的电气设备和不装设RCD的电气设备两者不能共用一个接地体。TT系统的RCD接线方式如图1所示。 对于TN-C系统,由于不允剩余电流保护采取多级保护方式,所以只能在电力客户的受电端安装末级RCD。RCD接线方式如图2所示。对于一般居民客户来讲,由于居住的条件限制,只能采用图2中非“*”号部分的接线方式;对于单位客户来讲,应推荐使用图2 中“*”号部分的接线方式,该方式是将客户端作局部的TT系统处理,即将RCD所保护的电气设备的外露金属部分用PEE线接到专用的接地体上。因为这个PEE线不与局部TT系统以外的PE线相连,所以在局部TT系统以外产生的危险故障电压不会由该PEE线引入电位,其保护的灵敏性远高于非“*”号部分的接线方式,但其需要安装的专用接地装置又不是一般家庭能完成的。 为了防止客户私自退出RCD的运行,建议供电企业为客户安装配电盘时,应将RCD安装在客户配电盘的电源进线首端,将客户的刀开关熔断器安装于RCD之后,提高RCD的运行效率。 5.5规范室内配线 规范用户端的室内配线和安装工艺,严格按照《农村低压电力技术规程》要求进行电器安装。同一场所的电器进线方式要统一,如配电盘的开关进线为面向配电盘,三相四线从左到右为N、A、B、C;单相排列为中性线、相线。所有电器设备的开关均应控制相线。要特别注意插座的接线要求,必须是:单相2孔插座,水平安装时面对插座的右接线柱接相线,左接线柱接中性线,垂直安装时插座的上接线柱接相线,下接线柱接中性线;单相3孔插座,面对插座的上孔接线柱在TT系统接接地线,在TN-C系统接保护中性线,右孔接线柱接相线,左孔接线柱接中性线;三相4孔插座,面对插座的上方接线柱在TT系统接接地线,在TN-C系统接保护中性线,相线则由左孔接线柱起分别接A、B、C三相。不同电压的插座安装于统一场所时,应有明显区别,且插头不能相互插入。 5.6 杜绝违章用电行为 用户在使用电能的时候,要严格遵守《农村安全用电规程》,杜绝用电违章行为。一是要严格按照电器使用的说明书操作,对需要采取保护接地的电器设备,一定要根据自己所在的电力系统选择相应的保护接地方式。二是要经常试验RCD的动作可靠性,对不能正常动作的要及时通知供电部门进行更换或维修,在发现RCD动作后无法正常投远时,要及时检查故障原因,待故障设备排除后,方可送电,严禁私自退出RCD的运行,强制送电。三是要根据自己的用电负荷合理选择熔断器和熔丝的大小,严禁用铜、铝线替代熔丝,尤其是采用接零保护的电力客户,如果不按规定选择使用熔断器和熔丝,电器设备一旦发生漏电故障,短路电流就不能使熔丝及时熔断,断开电源,使得接零保护难以发挥其应有的保护作用。这是因为该系统是利用设备绝缘损坏碰壳时,形成的单相金属性短路,产生的足够大的短路电流而使过流保护装置迅速动作,来切断漏电设备电源的。如果熔丝选择的熔断电流值大于短路电流值时,熔丝就不能及时熔断二失去切断电源之作用。四是不能以为安装了RCD就可以万事大吉了,任何丝毫的侥幸心理都会成为安全用电的隐患。电气接地方法分类的介绍 1、防雷接地 为把雷电迅速引入大地,以防止雷害为目的的接地。如避雷针、避雷器的接地 防雷装置如与电报设备的工作接地合用一个总的接地网时,接地电阻应符合其最小值要求。 2、交流工作接地 将电力系统中的某一点,直接或经特殊设备与大地作金属连接。 工作接地主要指的是变压器中性点或中性线(n线)接地。n线必须用铜芯绝缘线。在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地、屏蔽接地、防静电接地等混接;也不能与pe线连接。 3、安全保护接地 安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。即将大楼内的用电设备以及设备附近的一些金属构件,有pe线连接起来,但严禁将pe线与n线连接。 ①电机、变压器、照明器具、手持式或移动式用电器具和其他电器的金属底座和外壳; ②电气设备的传动装置; ③配电、控制和保护用的盘(台、箱)的框架; ④交直流电力电缆的构架、接线盒和终端盒的金属外壳、电缆的金属护层和穿线的钢管; ⑤室内、外配电装置的金属构架或钢筋混凝土构架的钢筋及靠近带电部分的金属遮拦和金属门; ⑥架空线路的金属杆塔或钢筋混凝土杆塔的钢筋以及杆塔上的架空地线、装在杆塔上的设备的外壳及支架; ⑦变(配)电所各种电气设备的底座或支架; ⑧民用电器的金属外壳,如洗衣机、电冰箱等。 4、直流接地 . 为了使各个电子设备的准确性好、稳定性高,除了需要一个稳定的供电电源外,还必须具备一个稳定的基准电位。可采用较大截面积的绝缘铜芯线作为引线,一端直接与基准电位连接,另一端供电子设备直流接地。 5、屏蔽接地与防静电接地 为防止智能化大楼内电子计算机机房干燥环境产生的静电对电子设备的干扰而进行的接地称为防静电接地。为了防止外来的电磁场干扰,将电子设备外壳体及设备内外的屏蔽线或所穿金属管进行的接地,称为屏蔽接地。 6、功率接地系统 电子设备中,为防止各种频率的干扰电压通过交直流电源线侵入,影响低电平信号的工作而装有交直流滤波器,滤波器的接地称功率接地 7、重复接地 在低压配电系统的tn-c系统中,为防止因中性线故障而失去接地保护作用,造成电击危险和损坏设备,对中性线进行重复接地。tn-c系统中的重复接地点为: ①架空线路的终端及线路中适当点; ②四芯电缆的中性线; ③电缆或架空线路在建筑物或车间的进线处; ④大型车间内的中性线宜实行环形布置,并实行多点重复接地; 二、要求 1、独立的防雷保护接地电阻应小于等于10欧; 2、独立的安全保护接地电阻应小于等于4欧; 3、独立的交流工作接地电阻应小于等于4欧; 4、独立的直流工作接地电阻应小于等于4欧; 5、防静电接地电阻一般要求小于等于100欧。 三、电气设备接地技术原则 1.为保证人身和设备安全,各种电气设备均应根据国家标准gb14050《系统接地的形式及安全技术要求》进行保护接地。保护接地线除用以实现规定的工作接地或保护接地的要求外,不应作其它用途。 2.不同用途和不同电压的电气设备,除有特殊要求外,一般应使用一个总的接地体,按等电位联接要求,应将建筑物金属构件、金属管道(输送易燃易爆物的金属管道除外)与总接地体相连接。 3.人工总接地体不宜设在建筑物内,总接地体的接地电阻应满足各种接地中最小的接地电阻要求。 4.有特殊要求的接地,如弱电系统、计算机系统及中压系统,为中性点直接接地或经小电阻接地时,应按有关专项规定执行。 . 接地装置的技术要求 1.变(配)电所的接地装置 ①变(配)电所的接地装置的接地体应水平敷设。其接地体采用长度为2.5m、直径不小于12mm的圆钢或厚度不小于4mm的角钢,或厚度不小于4mm的钢管,并用截面不小于25mm×4mm的扁钢相连为闭合环形,外缘各角要做成弧形。 ②接地体应埋设在变(配)所墙外,距离不小于3m,接地网的埋设深度应超过当地冻土层厚度,最小埋设深度不得小于0.6m. ③变(配)电所的主变压器,其工作接地和保护接地,要分别与人工接地网连接。 ④避雷针(线)宜设独立的接地装置。 2.易燃易爆场所的电气设备的保护接地 ①易燃易爆场所的电气设备、机械设备、金属管道和建筑物的金属结构均应接地,并在管道接头处敷设跨接线。 ②在1kv以下中性点接地线路中,当线路过电流保护为熔断器时,其保护装置的动作安全系数不小于4,为断路器时,动作安全系数不小于2. ③接地干线与接地体的连接点不得少于2个,并在建筑物两端分别与接地体相连。 ④为防止测量接地电阻时产生火花引起事故,需要测量时应在无爆炸危险的地方进行,或将测量用的端钮引至易燃易爆场所以外地方进行。 3.直流设备的接地 由于直流电流的作用,对金属腐蚀严重,使接触电阻增大,因此在直流线路上装设接地装置时,必须认真考虑以下措施。 ①对直流设备的接地,不能利用自然接地体作为pe线或重复接地的接地体和接地线,且不能与自然接地体相连。 ②直流系统的人工接地体,其厚度不应小于5mm,并要定期检查侵蚀情况。 4.手持式、移动式电气设备的接地 手持式、移动式电气设备的接地线应采用软铜线,其截面不小于1.5mm2,以保证足够的机械强度。接地线与电气设备或接地体的连接应采用螺栓或专用的夹具,保证其接触良好,并符合短路电流作用下动、热稳定要求。 五、接地装置的运行与维护 接地装置运行中,接地线和接地体会因外力破坏或腐蚀而损伤或断裂,接地电阻也会随土壤变化而发生变化,因此,必须对接地装置定期进行检查和试验。 1.定期检查 ①变(配)电所的接地装置一般每年检查一次; ②根据车间或建筑物的具体情况,对接地线的运行情况一般每年检查1~2次; ③各种防雷装置的接地装置每年在雷雨季前检查一次。 ④对有腐蚀性土壤的接地装置,应根据运行情况一般每3~5年对地面下接地体检查一次; ⑤手持式、移动式电气设备的接地线应在每次使用前进行检查; ⑥接地装置的接地电阻一般1~3年测量一次。 2.检查项目 ①检查接地装置的各连接点的接触是否良好,有无损伤、折断和腐蚀现象。 ②对含有重酸、碱、盐等化学成分的土壤地带(一般可能为化工生产企业、药品生产企业及部分食品工业企业)应检查地面下500mm以上部位的接地体的腐蚀程度。 ③在土壤电阻率最大时(一般为雨季前)测量接地装置的接地电阻,并对测量结果进行分析比较。 ④电气设备检修后,应检查接地线连接情况,是否牢固可靠。 ⑤检查电气设备与接地线连接、接地线与接地网连接、接地线与接地干线连接是否完好。 智能大厦接地系统的设计 1、防雷接地系统接地体一般利用智能大厦桩基,桩基上端钢筋通过承台面钢筋连在一起;防雷接地系统引下线一般利用柱子内钢筋;防雷接闪器用避雷带和避雷针结合的方式,智能大厦30米及以上,每三层利用圈梁钢筋与柱筋连在一起构成均压环;接地电阻要求小于1欧姆。 2、工作接地系统线就是电力系统中的n线。 3、保护接地系统,在变配电所内适当位置设总等电位铜排,从等电位铜排引出pe强电干线,每层在适当位置设辅助等电位铜排,从辅助等电位铜排引接地线至设备外壳及金属管道等。 4、直流接地系统。直流接地系统基准电位引自总等电位铜排,采用 35铜芯绝缘线,穿钢管保护直接引至设备附近,作直流接地用。 5、功率接地。用与相导体等截面的绝缘铜芯线从楼层配电箱与相导体一起引来,在tn-s系统中就是中性线n。 6、屏蔽接地及防静电接地,自总等电位铜排引出pe弱电干线,每层在适当位置设弱电辅助等电位铜排,电子设备的外壳,金属管路的屏蔽及抗静电接地均引起至弱电辅助等电位铜排。
文章TAG:
什么叫三线运维什么 三线 运维