载波扩容 有什么作用,一加2lte cat6载波聚合功能
来源:整理 编辑:汇众招标 2023-04-24 04:34:56
本文目录一览
1,一加2lte cat6载波聚合功能
首先,cat6只是手机的一种能力的等级,最主要的是能有300Mbps的峰值速率支持能力而载波聚合是另外一种功能,就是把2-5个载波绑起来用两者可以配合用,2个20Mhz载波的FDD绑起来用的峰值是300Mhz,是cat6的能力正好全部发挥意思就是网速比一般手机快好几倍载波聚合是lte-a中的关键技术。为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。因此lte-advanced系统引入一项增加传输带宽的技术,也就是ca(carrier aggregation,载波聚合)
2,乚丅E载波聚合是什么意思
载波聚合技术是一种利用多个载波同时承载业务的技术,这种技术在2010年3月份由3gpp发布的R10版本中有体现,它是作为一种提升速率为主的技术,除此之外,还对负荷均衡和控制信道的干扰带来一定的好处。载波聚合是LTE-A中的关键技术。为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。因此LTE-Advanced系统引入一项增加传输带宽的技术,也就是CA(Carrier Aggregation,载波聚合)。就是把一个大文件利用lte载波聚合方案先分割成n分,分别传输,待到接收方再进行重组形成完整文件来提高传输效率的一种数据传输技术。
3,为什么就CDMA要扩频
扩展频谱通信的定义 所谓扩展频谱通信,可简单表述 如下:“扩频通信技术是一种信 息传输方 式,其信号所占有的频带宽度远 大于所传信息必需的最小带宽; 频带的扩展是通过一个独立的码 序列来完成,用编码及调制的方 法来实现的,与所传信息数据无 关;在接收端则用同样的码进行 相关同步接收、解扩及恢复所传 信息数据”。 这一定义包含了以下三方面的意 思: 一、信号的频谱被展宽了。 我们知道,传输任何信息都需要 一定的带宽,称为信息带宽。 例如人类的语音的信息带宽为 300Hz --- 3400Hz,电视图像信 息带宽为数MHz。为了充分利用 频率资源,通常都是尽量采用大 体相当的带宽的信号来传输信 息。在无线电通信中射频信号的 带宽与所传信息的带宽是相比拟 的。如用调幅信号来传送语音信 息,其带宽为语音信息带宽的两 倍;电视广播射频信号带宽也只 是其视频信号带宽的一倍多。这 些都属于窄带通信。 一般的调频信号,或脉冲编码调 制信号,它们的带宽与信息带宽 之比也只有几到十几。扩展频谱 通信信号带宽与信息带宽之比则 高达100 --- 1000,属于宽带通 信。 为什么要用这样宽的频带的信号 来传输信息呢? 这样岂不太浪费 宝贵的频率资源了吗? 二、采用扩频码序列调制的方式 来展宽信号频谱。 我们知道,在时间上有限的信 号,其频谱是无限的。例如很窄 的脉冲信号,其频谱则很宽。信 号的频带宽度与其持续时间近似 成反比。1微秒的脉冲的带宽约 为1MHz。因此,如果用限窄的脉 冲序列被所传信息调制,则可产 生很宽频带的信号。 如下面介绍的直接序列扩频系统 就是采用这种方法获得扩频信 号。这种很窄的脉冲码序列,其 码速率是很高的,称为扩频码序 列。这里需要说明的一点是所采 用的扩频码序列与所传信息数据 是无关的,也就是说它与一般的 正弦载波信号一样,丝毫不影响 信息传输的透明性。扩频码序列 仅仅起扩展信号频谱的作用。 三、在接收端用相关解调来解扩 正如在一般的窄带通信中,已调 信号在接收端都要进行解调来恢 复所传的信息。 在扩频通信中接 收端则用与发送端相同的扩频码 序列与收到的扩频信号进行相关 解调,恢复所传的信息。换句话 说,这种相关解调起到解扩的作 用。即把扩展以后的信号又恢复 成原来所传的信息。这种在发端 把窄带信息扩展成宽带信号,而 在收端又将其解扩成窄带信息的 处理过程,会带来一系列好处。 弄清楚扩频和解扩处理过程的机 制,是理解扩频通信本质的关键 所在。因为cdma是在同一频率同一时间传输多个用户的通话信息,所以在调制不同用户信息时要加入不同的扩频码进行区分,
4,电力载波通信
电力载波通信与邮电系统有线载波通信在原理上没什么区别,只是用电力线代替了架空明线。不过在电力线上复用通信不象架空明线那样简单,不但要其保证人身设备的安全,而且还要获得最佳的载波信号传输效率,这就必须对电力线进行加工,解决电力线与载波设备之间的连接问题。图1是电力线载波通信的简单原理图。l高频阻波器 高频阻波器是用以高频载波信号向不需要的方向传输以防止其它高频信号串入高频载波信号造成干扰的设备。从图1可以看出,高频阻波器串联在高压输电线路上,因此它具备承受强大供电电流、供电电压及瞬间短路电流的能力。图2是阻波器的原理图。阻波器是由强流线圈Ln、保护器件FB以及调谐网络组成。线圈Ln是能够通过工频电流的电抗器,其额定电感在0.2~2MH左右,不同的输电等级对其要求不同。由公式Xu=2πfL可知。它对50HZ的工频电流阻抗很小(1Ω左右),对输电系统几乎没有影响。 由C1、L1、C2、R组成的调谐网络的作用是使阻波器在单个或多个频率上都有较高的阻抗,进一步的提高了阻波器的阻塞能力,展宽阻塞频带。电阻R为阻尼电阻,是为了防止变电站的电抗分量呈容性时与阻波器发生串联谐振(图3是阻波器的特性曲线图)。保护器件FB是为了保护阻波器不受其两端可能产生的瞬间过电压的损坏,一般由阀型避雷器间隙和非线性电阻组成。2耦合电容器 耦合电容器接在结合滤波器与高压导线之间,它是一个耐高压的瓷瓶油浸(十二烷基苯)纸介绝缘电容,其容量随电压等级的不同而不同。其作用是将载波设备与电力线上的高电压、操作过电压及雷电过电压等隔离开,防止高电压进入通信设备,同时使高频载波信号能顺利地耦合到高压线路上。3结合滤波器 结合滤波器在耦合电容器低压端和高频电缆之间。它是由接地刀闸K、避雷器、排流线圈L1、调谐网络L2、C1、匹配变量器B组成(见图4)。结合滤波器用来补偿耦合电容器的容抗分量,以提高载波信号的传输效率。它和耦合电容器配合组成高通或不对称带通滤波器,把载波信号耦合到高压电力线路上去,抑制邻线其它载波信号和线路50HZ谐波以及线路上其它干扰信号进入载波机的收信之路。 电力线高频通道的输入阻抗,相相耦合方式为600Ω,相地耦合方式为400Ω;而载波机输出阻抗为75Ω(或100Ω),这就需要滤波器中的匹配变量器B来完成阻抗变换。 当耦合电容器下端开路时,对他即呈现一个相当于输电电压的静电位。为了降低这个威胁人身安全的电位,在结合滤波器中接有一个排流线圈L1。L1对50HZ的工频电流阻抗很低,可以使耦合电容器下端对地工频电压限制在几V范围内,而对高频载波信号有很高的阻抗,不会把载波信号旁路入地。 通过以上分析可知,电力线载波通信质量的保证与高频通道有着直接关系,高频通道的频率特性好,就能有效的防止外来高频谐波的干扰,高效率地传输载波信号,否则将会使通话质量下降,严重时可造成通话中断。优点:只需要两端加上阻波器等少量设备即可实现通讯、远传等功能,投资小!缺点:信号质量差,单宽窄,线路停运时检修时(有地线时)就不能传送数据
5,D频段和F频段有什么区别
在TD-LTE组网频率选择上,D频段(2.6GHz)和F频段(1.9GHz),有着不同的特点,两者在频率干扰、网络部署以及容量扩展等方面都有各自的优劣势。频率干扰:D频段频谱干净;F频段周围干扰较多。2.6GHz的D频段频谱比较干净,周围频率目前没有系统使用,几乎没有带外的频率干扰,本身频段隔离度要好于F频段。1.9GHz会受到PHS,TD- SCDMA,DCS1800高端频段(1850~1880MHz)带来严重阻塞干扰,受到GSM900二次谐波带来的频率干扰,未来1.8GHz FDD下行,电信FDD上行频段,也会有干扰,影响正常业务。F频段附近干扰源众多,密集市区尤为严重,从频率规划的角度来看,尽可能简单。另外F频段干扰排查和优化成本也会变得很高,这会给TD-LTE网络质量隐患。单从干扰角度看,在密集市区采用D频段是比较理想的选择。网络部署:F频段升级部署快捷,初期建设成本低。TD-LTE部署初期,F频段升级建设相对快速,部署方便,初期投资成本低,而D频段频谱宽,后续扩容只需要软件升级即可,综合长期的投资成本而言,D频 段也是有优势的。D频段与F频段相比,理论覆盖范围会小些。然而,在试验网实测中,D频段在500-600米站间距下,性 能也是相当不错的,上海五角场和青岛市区几十个基站下行平均可达30Mbps以上。实测数据证明,密集城区450米站间距以下,D频段与F频段有相当的室 外覆盖效果。容量扩展:D频段有丰富的频谱,扩展容易。D频段扩展性强,拥有190MHz频谱资源可以容易实现载频扩容。F频段目前被PHS小灵通占用,仅20M频谱可用,由于频段限制,无法在原有频段上进行 第二载波扩容,只能使用单频点组网,在小区边缘重叠区域,性能下降严重。随着网络后续发展,势必要采用新建D频段作为第二载波方式,即一年左右仍然要在D 频段进行扩容,这时,就需要F+D频段混合组网。结合中长期发展需要,综合考虑未来的容量建设便捷性(第二载波),在密集市区和市区上D频段有较大优势,因此在网络建设初期,建议大城市的密集城区,F频段和D频段要同步规划,考虑F+D混合组网的方式。在郊区和农村可以采用F频段新建或升级,以满足覆盖的需求。产业链:D频段产业链优势明显。网络性能方面:D/F新建网络优化简单,F升级无法联合优化。D频段容易实现独立组网,多载频扩容方便,软件升级即可支持,减少了网络的复杂度。而且D频段资源丰富,可以采用异频组网,使得网络规划难度大大降低,也降低了工程建设的难度,可以实现独立优化,从而打造优异高品质的网络。虽然F频段升级可以在初期实现快速网络部署,对于升级方案,TD-SCDMA和TD-LTE两张网无法同时达到性能最优,无法展开独立网络优化,会造成性 能损失最高达到20%~40%,如果采用F频段新建的方式,也可以提升网络质量。因此,不建议以牺牲长期网络质量为代价,综合考虑,采用D新建和F新建更 合适些。区别:D频段 :2570M~2620MF频段 :1880M~1920MD频段和F频段:1、在TD-LTE组网频率选择上,D频段(2.6GHz)和F频段(1.9GHz),有着不同的特点,两者在频率干扰、网络部署以及容量扩展等方面都有各自的优劣势。2、频率干扰:D频段频谱干净;F频段周围干扰较多。2.6GHz的D频段频谱比较干净,周围频率目前没有系统使用,几乎没有带外的频率干扰,本身频段隔离度要好于F频段。1.9GHz的F频段会受到PHS,TD- SCDMA,DCS1800高端频段(1850~1880MHz)带来严重阻塞干扰,受到GSM900二次谐波带来的频率干扰。3、网络部署:F频段升级部署快捷,初期建设成本低,而D频段频谱宽,后续扩容只需要软件升级即可。4、容量扩展:D频段有丰富的频谱,扩展容易。F频段目前被PHS小灵通占用,仅20M频谱可用,由于频段限制,无法在原有频段上进行 第二载波扩容。5、产业链:D频段产业链优势明显。6、网络性能方面:D/F新建网络优化简单,F升级无法联合优化。很简单嘛~无线电基础知识:频率越低穿透力传播性能越强,频率越高穿透力传播性能越弱(至于为什么,公式不好打自己查就好)。至于他们说的干净不干净,我想是因为周边同频率信源多少决定,比若说周围都是D那么D就容易不干净,如果周围都是F那么F频段也不干净。换句话说DF频段分开覆盖,这样的话DF都很干净。
6,电容上标有472j63值是多少
472表示该电容的电容量是4700pF。J表示该电容误差是5%,若标的是K,则表示该电容误差是10%,若是M,则表示误差是20%。后面的63表示该电容耐压值是63V。贴片元件的识别 作者:贵阳家电 文章来源:长安电器 点击数: 832 更新时间:2009-3-22 片状电阻的识别 在数码电子产品中,电阻实物一般是片状矩形,无引脚,一个片状电阻只有一粒米大小。电阻体是黑色或浅蓝色,两头是银色镀锡层。数码电子产品中的电阻大多未标出其阻值,个别个头稍大的电阻在其表面一般用三位数表示其阻值,其中第一、二位数为有效数字,第三位数为倍乘,即有效数字后面“0”的个数,单位是ω。例如100表示10ω,102表示 1000ω即1kω。当阻值小于10ω时,以r表示,将r看作小数点,如5rl表示5.1ω。片状电容的识别 在数码电子产品中,无极性普通电容的外观、大小与电阻相似,电容一般为棕色、黄色、浅灰色、淡蓝色或淡绿色等,两端为银色。无极性普通电容都很小,最小的面积只有1mm×2mm。通常电解电容的外观是长方体,个头稍大,颜色以黄色和黑色最常见。电解电容的正极一端有一条色带(黄色的电解电容色带通常是深黄色,黑色的电解电容色带通常为白色)。还有一种电容体颜色鲜艳,它是金属钽电容,其特点是容量稳定。它的突出一端为正极性,则另一端为负极性。 在数码电子产品电路中,μf级(微法)的电容一般为有极性的电解电容,而pf级(皮法)的一般为无极性普通电容。电解电容由于体积大,其容量与耐压直接标在电容体上,而钽电解电容则不标其大小和耐压,可通过图纸查找。注意电解电容是有极性的,使用时正、负极不可接反。有的普通电容容量采用符号标注,在其中间标出两个字符,而大部分普通电容则未标出其容量。标注符号的意义是第一位用字母表示有效数字,第二位用数字表示倍乘,单位为pf。字母所表示的有效数字的意义参见表1、表2。例如:电容体上标有“c3字样的电容容量是1.2×10pf=1200pf片状电感的识别 数码电子产品电路中电感的数量很多,有的从外观上可以辨认出来。 一般是数码电子产品电源电路中的升压电感数码电子产品中还有很多lc选频电路的电感,如图3(c)所示,外表白色、浅蓝色、绿色、一半白一半黑或两头是银色的镀锡层,中间为蓝色等颜色,形状类似普通小电容,这种电感即叠层电感,又叫压模电感,可以通过图纸和测量方法将其与电容分开。片状二极管的识别 二极管的类别不同在电路中的作用也不同。普通二极管用于开关、整流、隔离;发光二极管用于键盘灯、显示屏灯照明;变容二极管是一种电压控制元件,通常用于压控振荡器(vco),改变数码电子产品本振和载波频率,使数码电子产品锁定信道;稳压二极管用于简单的稳压电路或产生基准电压。 数码电子产品中二极管的外型与电阻、电容相似。有的呈矩形、有的呈柱形,一般为黑色,一端有一白色的竖条,表示该端为负极。数码电子产品中常采用双二极管封装即两个二极管组成的元件,为3~4个引脚,此时难以辨认,还会与三极管混淆,只有借助于原理图和印制板图识别,或通过测量确定其引脚。贴片三极管与场效应管(mos)的识别 数码电子产品中的三极管与场效应管一般也为黑色,大多数为三只引脚,少数为四只引脚(三极管中有两个脚相通,一般为发射极e或源极s)。也有双三极管封装、双mos管封装形式。需要说明的是,晶体三极管的外形和作用与场效应管极为相似,在电路板上很难区分,只有借助于原理图和印制板图识别,判断时应注意区分,以免误判。三极管有npn、pnp两种类型,场效应管有nmos管、pmos管两种类型,其栅极g、源极s、漏极d分别对应于三极管的基极b、发射极e、集电极c。但与三极管相比,场效应管具有很高的输入电阻,工作时栅极几乎不取信号电流,因此它是电压控制元件。 mos管使用注意事项:mos管的输入阻抗高,这样很小的输入电流都会产生很高的电压,使管子击穿。因此拆卸场效应管时需使用防静电的电烙铁,最好使用热风枪。另外栅极不可悬浮,以免栅极电荷无处释放而击穿场效应管。 也有双三极管、双场效应管封装方式。一类是单纯的两个管子封装在一起,还有一类是两个管子有逻辑 关系,如构成电子开关等。 贴片稳压电路的识别 稳压块主要用于数码电子产品的各种供电电路,为数码电子产品正常工作提供稳定的、大小合适的电压。应用较多的主要有5脚和6脚稳压块,外观与双三极管、双场效应管封装方式类似。如爱立信788、t18,三星600等数码电子产品较多地使用了这类稳压块。稳压块实物如图所示。当控制脚为高电平时,输出脚有稳压输出。一般在稳压块表面有输出电压标称值,例如:“28p”表示输出电压是2.8v。 贴片集成电路的识别 集成电路用字母ic表示。ic内最容易集成的是pn结,也能集成小于1000pf的电容,但不能集成电感和较大的组件,因此,ic对外要有许多引脚。将那些不能集成的元件连到引脚上,组成完整的电路。由于ic内部结构很复杂,在分析集成电路时,重点是ic的主要功能、输入、输出、供电及对外呈现出来的特性等,并把其看成一个功能模块,分析ic的引脚功能,外围组件的作用等。 由于ic有许多引脚,外围组件又多,所以要判断ic的好坏比较困难,通常采用在线测量法、触摸法、观察法(损坏或大电流时,加电发烫、鼓包、变色及裂纹等)、按压法(观察数码电子产品工作情况,从而判断ic是否虚焊)、元件置换法和对照法等。 数码电子产品电路中使用的ic多种多样,有射频处理ic、逻辑ic、电源ic、锁相环ic等。ic的封装形式各异,用得较多的表面安装集成ic的封装形式有小外型封装,四方扁平封装和栅格阵列引脚封装等。 1.小外型封装 小外型封装又称sop封装,其引脚数目在28之下,引脚分布在两边,数码电子产品电路中的存储器、电子开关、频率合成器、功放等集成电路常采用这种sop封装。 2.四方扁平封装 四方扁平封装适用于高频电路和引脚较多的模块,简称qfp封装,四边都有引脚,其引脚数目一般为20以上。如许多中频模块、数据处理器、音频模块、微处理器、电源模块等都采用qfp封装。 对于小外型封装和四方扁平封装的ic,找出其引脚排列顺序的关键是先找出第1脚,然后按照逆时针方向确定其他引脚。确定第1脚方法:ic表面字体正方向左下脚圆点为1脚标志;或者找到ic表面打“·”的标记处,对应的引脚为第1脚。 3.球形栅格阵列内引脚封装 球形栅格阵列内引脚封装又称bga封装,是一个多层的芯片载体封装,这类封装的引脚在集成电路的“肚皮”底部,引线是以阵列的形式排列的,其引脚是按行线、列线来区分,所以引脚的数目远远超过引脚分布在封装外围的封装。利用阵列式封装,可以省去电路板多达70%的位置。bga封装充分利用封装的整个底部来与电路板互连,而且用的不是引脚而是焊锡球,因此还缩短了互连的距离。目前,许多数码电子产品,如摩托罗拉l2000型手机的电源ic、诺基亚8810型手机的cpu、数码照相机和数码摄录像机的cpu与dsp处理芯片、数码照相机的sd卡处nic、数码摄录像机的录像信号处理芯片等都采用这种封装形式。
文章TAG:
载波扩容载波 扩容 有什么