岸坡纵向长度是什么,道路纵横坡度都是什么意思 边坡点间距离什么意思
来源:整理 编辑:汇众招标 2022-12-20 11:34:56
本文目录一览
1,道路纵横坡度都是什么意思 边坡点间距离什么意思
纵向坡度指的的是沿路长度方向的坡度;
横向指的是宽度方向的坡度。
2,什么是纵向
在生活中中我们看到的左右方向理解为横向,上下方向就是纵向。纵项其意义就是竖项!所以,它与横向相对的!采纳吧!
3,坡度是怎么算的
就是三角行中的正切值 坡段高度除以水平投影长度的值
4,摩托车轴距 1235mm 是指什么
轴距就是通过车辆同一侧相邻两车轮的中点,并垂直于车辆纵向对称平面的二垂线之间的距离。简单地说,就是摩托车前轴中心到后轴中心的距离。mm是长度单位毫米,轴距1235mm 是指摩托车前轴中心到后轴中心的距离为1.235米。从实际使用看,轴距的长短直接影响车的长度,进而影响车的使用空间。长轴距在提高直路巡航稳定性的同时,转向灵活性下降、转弯半径增大,摩托车的机动性也越差。因此在稳定性和灵活性之间必须作出取舍,找到合适的平衡点。
5,园林里面提到的竖向设计是什么意思啊
竖向设计:对项目平面进行高程确定的设计,形成的竖向空间.比如道路的上下起伏,就是竖向设计,比如小区内地面的高低差落,就是竖向设计.竖向设计三种表示方法竖向设计的表示方法主要有设计标高法、设计等高线法和局部剖面法三种。一般来说,平坦场地或对室外场地要求较高的情况常用设计等高线法表示,坡地场地常用设计标高法和局部剖面法表示:1)、设计标高法。也称高程箭头法,该方法根据地形图上所指的地面高程,确定道路控制点(起止点、交叉点)与变坡点的设计标高和建筑室内外地坪的设计标高,以及场地内地形控制点的标高,将其注在图上。设计道路的坡度及坡向,反映为以地面排水符号(即箭头)表示不同地段、不同坡面地表水的排除方向。2)、设计等高线法。是用等高线表示设计地面、道路、广场、停车场和绿地等的地形设计情况。设计等高线法表达地面设计标高清楚明了,能较完整表达任何一块设计用地的高程情况3)、局部剖面法。该方法可以反映重点地段的地形情况,如地形的高度、材料的结构、坡度、相对尺寸等,用此方法表达场地总体布局时台阶分布、场地设计标高及支挡构筑物设置情况最为直接。对于复杂的地形,必须采用此方法表达设计内容。
6,简述基岩海岸平衡剖面的形成过程
海岸带的主要外动力是波浪和潮流。在波浪和潮流的作用下,有些地方发生侵蚀,有些地方发生堆积,泥沙发生平行海岸线的移动--纵向移动和垂直于海岸线的移动--横向移动,从而使海岸线的平面轮廓和剖面形态发生变化。
在波浪作用下,近岸水质点做往复运动。当波峰来临时,水质点向岸运动,近底层产生向岸的水流;当波谷来临,水质点向海运动,近底层产生向海的水流。水下岸坡近水底的泥沙颗粒,在波浪的作用下做往复运动。假设原始水下岸坡是一个微微向海倾斜的,由同一粒径的泥沙组成的斜坡,并且波浪前进的方向与海岸垂直及其作用力保持不变,那么在水下岸坡上,存在着一个中立线(图9-17 )。在中立线的向海一侧,由于水深较大,波浪变形较小,水质点向岸和向海的移动速度与距离都差不多。但由于重力的作用,妨碍了泥沙向岸的运动,却增大了泥沙向海的位移,因此泥沙在波浪作用下逐渐向海移动。在中立线向岸的一侧,水深变小,波浪变形强烈,水质点向岸移动速度与距离远远大于向海的移动速度与距离,并且超过了重力的影响,每次波浪过后,泥沙都向岸边移动一段距离。在中立线附近,波浪变形产生的向岸(向坡上)的力,正好与重力作用产生的向海(向坡下)的力相抵消。因此岸坡上的泥沙颗粒在波峰到来时,向岸移动一段距离,而波谷到来时又回到原来的位置,泥沙静位移量等于零。这就是称之为中立线的原因。在中立线附近,由于泥沙静位移量为零,所以不冲也不淤,岸坡不发生变化。在中立线以上,由于泥沙向岸移动,岸坡受侵蚀,侵蚀下来的泥沙被带到岸边堆积形成海滩,从而使岸坡坡度增大。当岸坡坡度增大到一定程度,岸坡上的泥沙所受到的重力下滑力与波浪变形产生的向岸上移的力相平衡,泥沙静位移量变为零。在中立线以下,泥沙向下移动堆积在坡脚(波及面以下)形成水下堆积阶地(图9-18)。由于下部堆积、上部侵蚀,岸坡坡度变缓,重力的作用减弱。当岸坡坡度变缓到一定程度,岸坡上的泥沙受到的波浪变形产生的向岸上移的力与重力产生的下滑力相平衡,泥沙静位移量变为零。当岸坡发育到这个阶段,整个岸坡上的泥沙的静位移量都为零,岸坡上没有侵蚀也没有淤积,整个剖面处在动态平衡状态,这时的海岸剖面为均衡剖面。发育在松散泥沙组成的岸坡上的均衡剖面,往往呈上凹的形态。
7,二滩水电站与众不同之处是什么
二滩工程采用双曲拱坝,由于河谷狭窄、水头高、流量大,因此泄洪消能设施成为二滩水电站枢纽中的重要组成部分。二滩泄洪建筑物按千年一遇洪水流量20600立方米/秒设计,5000年一遇的洪水流量23900立方米/秒校核。大坝为混凝土双曲拱坝,为使坝体应力分布均匀,坝肩推力更偏向山体,有利于坝身稳定,水平拱圈为二次抛物线,拱冠梁的上游面为三次多项式曲线。坝顶高程1205米,顶部厚度11米,拱冠梁底部厚度55.74米,拱端最大厚度58.51米,厚度比0.232,拱圈最大中心角91.49°,上游面最大倒悬度0.18。坝顶弧长775米。坝体混凝土量400万立方米。泄洪表孔设于拱坝坝顶中央,共7孔,每孔宽11米,高11.5米,堰顶高程1188.5米,装设弧形闸门。采用相邻大差动30°与20°的俯角跌坎,跌坎上设分流齿坎消能工。泄水中孔共6孔,布置在拱坝坝体中。为使水舌能与表孔水舌有较大碰撞角,中孔体型呈上翘形。出口高程1120米,孔口断面为方形,尺寸为6米×5米。为避免水流径向集中,中孔在平面上实行压力偏转,并用30°、17°、10°三组不同挑角将水舌在横向和纵向散开,以避免水舌重叠而加深对下游的冲刷。二滩水电站两条泄洪洞布置在右岸,采用短进水口龙抬头式直线布置,隧洞为方形断面明流洞,尺寸13米×13.5米(宽×高)。进口底部高程1163米。1号洞长866.53米,2号洞长1197.33米。两洞直坡段底坡分别为7.9%和7%,龙抬头段集中落差为70米,洞内最大流速约45米/秒。为了防止高速水流发生空蚀破坏,分别在这两条泄洪洞各设5个和7个掺气设施。掺气设施为一种U型槽式挑坎的新型掺气设施。3套泄洪设施的泄流能力均能单独泄放常年遇到的洪水。大洪水时3套泄洪设施联合泄洪,表、中孔水舌上下碰撞,分散消能。下游设置水垫塘和二道坝作为防冲保护措施。二道坝轴线距拱坝线330米,坝顶高1010米(河床)~1017米(两岸)。水垫塘用钢筋混凝土保护,底板高程980米,长354.14米。当枯水期检修时,只需将二道坝临时加高4~6米,可保证水垫塘有半年多的检修期。二滩坝址二滩水电站具有修建高混凝土双典拱坝的良好地形和地质条件。初步设计审定的双曲拱坝拱冠梁底宽70.34米,坝体混凝土量474.2万立方米;经优化设计后,最后采用的混凝土双曲拱坝拱冠梁底部最大宽度减为55.74米,坝体混凝土量减为424.2万立方米,比初步设计节约混凝土50 万立方米。优化后的双曲拱坝坝高240米,拱冠顶部宽度11米,拱冠梁底部宽度55.74米,拱端最大宽度58.51米,拱圈最大中心角91.5°,坝顶弧长774.69米。二滩拱坝采用抛物线形双曲拱坝,使接近岸坡拱的曲率减小而趋扁平化,以加大拱推力与岸坡的夹角,增加坝肩稳定。为使应力分布均匀,减小拱坝断面,纵向采用高次曲线,加大纵向曲率,上游面最大倒悬度控制在0.18。由于河流两岸地形不完全对称,左半拱和右半拱采用不同曲率半径,顶拱中心线曲率半径在349.19米~981.15米范围。为泄洪和降低库水位需要,坝体分3层开孔:7个表孔、6个中孔和4个放水底孔,另外由于后期导流需要,在大坝底部设置4个导流底孔,在二期导流结束后予以封堵。为了尽量减小坝体施工的复杂性,二滩拱坝坝内仅布置了4层廊道,以满足大坝监测、灌浆、排水、交通等需要。大坝帷幕中心线近似平行坝轴线,左岸在不同高程分别深入拱座山体内,然后折向上游与地下厂房防渗帷幕连成一体。右岸从坝头折向上游与泄洪洞防渗帷幕连成一体。帷幕灌浆在基础廊道和灌浆平洞内施工。左岸 1091.7米高程以上,右岸1115米高程以上帷幕采用单排,要求透水量小于3Lu;上述高程以下,帷幕采用双排,要求透水量小于1Lu。主帷幕最大 深度为105米。拱坝分39个坝段,有19个主要接缝灌浆区,在1145米高程以下每个灌区高度为12米,1145米高程以上每灌区高度为15米。大坝不设纵缝,横缝采用球面键槽,球面键槽模板直径80cm,深15cm,与常规剪力键模板相比,结构简单,施工方便。大坝横缝灌浆系统采用预留水平灌浆槽和预埋连接在灌浆槽上的灌浆钢管组成。灌浆槽分设在灌区底部和顶部,分别连 接进浆管和出浆管,采用此系统施工方便,保证了灌浆质量。
文章TAG:
岸坡纵向长度是什么岸坡 纵向 长度